尽管机器学习方法在其培训领域表现良好,但通常在现实世界中往往会失败。在心血管磁共振成像(CMR)中,呼吸运动代表了采集质量以及随后的分析和最终诊断的主要挑战。我们提出了一个工作流程,该工作流程预测CMRXMOTION挑战2022的CMR中呼吸运动的严重程度得分。这是技术人员在获取过程中立即提供有关CMR质量的反馈的重要工具,因为可以直接重新获得质量较差的图像,同时还可以重新获得质量。该患者在附近仍有可用。因此,我们的方法可确保获得的CMR在用于进一步诊断之前达到特定的质量标准。因此,在严重运动人工制品的情况下,它可以有效地进行适当诊断的有效基础。结合我们的细分模型,这可以通过提供完整的管道来保证适当的质量评估和对心血管扫描的真实细分来帮助心脏病专家和技术人员的日常工作。代码库可在https://github.com/meclabtuda/qa_med_data/tree/dev_qa_cmrxmotion获得。
translated by 谷歌翻译
大多数持续学习方法都在明确定义任务边界并在培训和测试过程中可用的任务标识信息的设置中进行了验证。我们探讨了这种方法在任务不足的环境中的性能,该环境更像动态临床环境,并逐渐变化。我们提出了Odex,这是一种整体解决方案,将分布外检测与持续学习技术相结合。在海马分割的两种情况下进行验证表明,我们提出的方法可靠地维持早期任务的性能而不会失去可塑性。
translated by 谷歌翻译
联邦学习是培训强大的深度学习模型的最有希望的胸廓CTS中Covid-19相关发现的细分。通过以分散的方式学习,异构数据可以从各种来源和采集协议中利用,同时确保患者隐私。然而,连续监测模型的性能是至关重要的。然而,当涉及弥漫性肺病变的分割时,快速的目视检查是不足以评估专家放射科医师对所有网络输出的质量,并且无法彻底监测。在这项工作中,我们呈现了一系列轻量级度量,可以在每个医院本地计算,然后聚合用于联合系统的中央监控。我们的线性模型检测到分布外数据集上超过70%的低质量分段,从而可靠地发出模型性能下降。
translated by 谷歌翻译
Performance metrics-driven context caching has a profound impact on throughput and response time in distributed context management systems for real-time context queries. This paper proposes a reinforcement learning based approach to adaptively cache context with the objective of minimizing the cost incurred by context management systems in responding to context queries. Our novel algorithms enable context queries and sub-queries to reuse and repurpose cached context in an efficient manner. This approach is distinctive to traditional data caching approaches by three main features. First, we make selective context cache admissions using no prior knowledge of the context, or the context query load. Secondly, we develop and incorporate innovative heuristic models to calculate expected performance of caching an item when making the decisions. Thirdly, our strategy defines a time-aware continuous cache action space. We present two reinforcement learning agents, a value function estimating actor-critic agent and a policy search agent using deep deterministic policy gradient method. The paper also proposes adaptive policies such as eviction and cache memory scaling to complement our objective. Our method is evaluated using a synthetically generated load of context sub-queries and a synthetic data set inspired from real world data and query samples. We further investigate optimal adaptive caching configurations under different settings. This paper presents, compares, and discusses our findings that the proposed selective caching methods reach short- and long-term cost- and performance-efficiency. The paper demonstrates that the proposed methods outperform other modes of context management such as redirector mode, and database mode, and cache all policy by up to 60% in cost efficiency.
translated by 谷歌翻译
It does not matter whether it is a job interview with Tech Giants, Wall Street firms, or a small startup; all candidates want to demonstrate their best selves or even present themselves better than they really are. Meanwhile, recruiters want to know the candidates' authentic selves and detect soft skills that prove an expert candidate would be a great fit in any company. Recruiters worldwide usually struggle to find employees with the highest level of these skills. Digital footprints can assist recruiters in this process by providing candidates' unique set of online activities, while social media delivers one of the largest digital footprints to track people. In this study, for the first time, we show that a wide range of behavioral competencies consisting of 16 in-demand soft skills can be automatically predicted from Instagram profiles based on the following lists and other quantitative features using machine learning algorithms. We also provide predictions on Big Five personality traits. Models were built based on a sample of 400 Iranian volunteer users who answered an online questionnaire and provided their Instagram usernames which allowed us to crawl the public profiles. We applied several machine learning algorithms to the uniformed data. Deep learning models mostly outperformed by demonstrating 70% and 69% average Accuracy in two-level and three-level classifications respectively. Creating a large pool of people with the highest level of soft skills, and making more accurate evaluations of job candidates is possible with the application of AI on social media user-generated data.
translated by 谷歌翻译
Vision transformers (ViTs) are quickly becoming the de-facto architecture for computer vision, yet we understand very little about why they work and what they learn. While existing studies visually analyze the mechanisms of convolutional neural networks, an analogous exploration of ViTs remains challenging. In this paper, we first address the obstacles to performing visualizations on ViTs. Assisted by these solutions, we observe that neurons in ViTs trained with language model supervision (e.g., CLIP) are activated by semantic concepts rather than visual features. We also explore the underlying differences between ViTs and CNNs, and we find that transformers detect image background features, just like their convolutional counterparts, but their predictions depend far less on high-frequency information. On the other hand, both architecture types behave similarly in the way features progress from abstract patterns in early layers to concrete objects in late layers. In addition, we show that ViTs maintain spatial information in all layers except the final layer. In contrast to previous works, we show that the last layer most likely discards the spatial information and behaves as a learned global pooling operation. Finally, we conduct large-scale visualizations on a wide range of ViT variants, including DeiT, CoaT, ConViT, PiT, Swin, and Twin, to validate the effectiveness of our method.
translated by 谷歌翻译
Machine learning algorithms have revolutionized different fields, including natural language processing, computer vision, signal processing, and medical data processing. Despite the excellent capabilities of machine learning algorithms in various tasks and areas, the performance of these models mainly deteriorates when there is a shift in the test and training data distributions. This gap occurs due to the violation of the fundamental assumption that the training and test data are independent and identically distributed (i.i.d). In real-world scenarios where collecting data from all possible domains for training is costly and even impossible, the i.i.d assumption can hardly be satisfied. The problem is even more severe in the case of medical images and signals because it requires either expensive equipment or a meticulous experimentation setup to collect data, even for a single domain. Additionally, the decrease in performance may have severe consequences in the analysis of medical records. As a result of such problems, the ability to generalize and adapt under distribution shifts (domain generalization (DG) and domain adaptation (DA)) is essential for the analysis of medical data. This paper provides the first systematic review of DG and DA on functional brain signals to fill the gap of the absence of a comprehensive study in this era. We provide detailed explanations and categorizations of datasets, approaches, and architectures used in DG and DA on functional brain images. We further address the attention-worthy future tracks in this field.
translated by 谷歌翻译
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems. In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users. DR has a widely recognized potential for improving power grid stability and reliability, while at the same time reducing end-users energy bills. However, the conventional DR techniques come with several shortcomings, such as the inability to handle operational uncertainties while incurring end-user disutility, which prevents widespread adoption in real-world applications. The proposed framework addresses these shortcomings by implementing DR and DEM based on real-time pricing strategy that is achieved using deep reinforcement learning. Furthermore, this framework enables the power grid service provider to leverage distributed energy resources (i.e., PV rooftop panels and battery storage) as dispatchable assets to support the smart grid during peak hours, thus achieving management of distributed energy resources. Simulation results based on the Deep Q-Network (DQN) demonstrate significant improvements of the 24-hour accumulative profit for both prosumers and the power grid service provider, as well as major reductions in the utilization of the power grid reserve generators.
translated by 谷歌翻译
Recently, there has been a significant amount of interest in satellite telemetry anomaly detection (AD) using neural networks (NN). For AD purposes, the current approaches focus on either forecasting or reconstruction of the time series, and they cannot measure the level of reliability or the probability of correct detection. Although the Bayesian neural network (BNN)-based approaches are well known for time series uncertainty estimation, they are computationally intractable. In this paper, we present a tractable approximation for BNN based on the Monte Carlo (MC) dropout method for capturing the uncertainty in the satellite telemetry time series, without sacrificing accuracy. For time series forecasting, we employ an NN, which consists of several Long Short-Term Memory (LSTM) layers followed by various dense layers. We employ the MC dropout inside each LSTM layer and before the dense layers for uncertainty estimation. With the proposed uncertainty region and by utilizing a post-processing filter, we can effectively capture the anomaly points. Numerical results show that our proposed time series AD approach outperforms the existing methods from both prediction accuracy and AD perspectives.
translated by 谷歌翻译
Causal discovery, the inference of causal relations from data, is a core task of fundamental importance in all scientific domains, and several new machine learning methods for addressing the causal discovery problem have been proposed recently. However, existing machine learning methods for causal discovery typically require that the data used for inference is pooled and available in a centralized location. In many domains of high practical importance, such as in healthcare, data is only available at local data-generating entities (e.g. hospitals in the healthcare context), and cannot be shared across entities due to, among others, privacy and regulatory reasons. In this work, we address the problem of inferring causal structure - in the form of a directed acyclic graph (DAG) - from a distributed data set that contains both observational and interventional data in a privacy-preserving manner by exchanging updates instead of samples. To this end, we introduce a new federated framework, FED-CD, that enables the discovery of global causal structures both when the set of intervened covariates is the same across decentralized entities, and when the set of intervened covariates are potentially disjoint. We perform a comprehensive experimental evaluation on synthetic data that demonstrates that FED-CD enables effective aggregation of decentralized data for causal discovery without direct sample sharing, even when the contributing distributed data sets cover disjoint sets of interventions. Effective methods for causal discovery in distributed data sets could significantly advance scientific discovery and knowledge sharing in important settings, for instance, healthcare, in which sharing of data across local sites is difficult or prohibited.
translated by 谷歌翻译